If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-2y-36=0
a = 1; b = -2; c = -36;
Δ = b2-4ac
Δ = -22-4·1·(-36)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{37}}{2*1}=\frac{2-2\sqrt{37}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{37}}{2*1}=\frac{2+2\sqrt{37}}{2} $
| 6-2-x=12 | | v+1/5=3 | | 2x—x+4+2=8 | | -3=4+x/5 | | 8=-x=+5x | | 5/6*p=7 | | 3^5x^2-21x=1/18 | | 4^6x+2=48 | | 3t+1=-17 | | 2+2n-6=6 | | j2-17j+72=0 | | 3x-6x=-9 | | 8(x-1)-3(2x-9)=-15+2 | | -12=5n=3-2n | | -4+5b-5=-14 | | 3x^2+16x=5 | | n/2=2/9 | | 51=6m-3 | | -15=-3/5y | | -5y/6=30 | | 90+x+(x-20)=180 | | -3/5u=-12 | | q/1.8=5 | | 8(x-1)-3(2x-9)=-15 | | 90+x+70=180 | | 1*d=2.3 | | 8w=-16/7 | | -4=-2/7v | | s/1/2=3/4 | | -16=-4/9y | | 6=(3x-7)=16 | | r+6.9=9.9 |